

Contexte

Lombalgie:

- Douleur ressentie comme provenant de la région lombaire et ou de la région sacro-iliaque (IASP)
- Pouvant irradier dans la fesse, la crête iliaque et la cuisse (HAS)

70% à 85% des adultes souffriront au moins une fois dans leur vie d'un épisode de lombalgie.

Lombalgie : première pathologie en termes d'années vécues avec des incapacités dans le monde (Institute for Health Metrics and Evaluation).

Hands on/ hands off

Recommandations

A INTERVENTIONS - MANUAL THERAPY

- A INTERVENTIONS PROGRESSIVE ENDURANCE EXERCISE AND FITNESS ACTIVITIES
- A INTERVENTIONS TRUNK COORDINATION, STRENGTHENING, AND ENDURANCE EXERCISES
- B INTERVENTIONS PATIENT EDUCATION AND COUNSELING

JOSPT - 2012

Les prises en charge multidisciplinaires associant, dans des proportions qui restent à définir, des séances d'éducation et de conseils, des exercices physiques intensifs supervisés ou non par un kinésithérapeute à une prise en charge psychologique sont recommandées pour le traitement à visée antalgique, fonctionnelle et dans une moindre mesure pour le retour au travail des lombalgiques chroniques (grade B).

HAS (ANAES) – 2000

Contexte scientifique

Études s'intéressant à la **combinaison** de techniques hands on et hands off pour la prise en charge des lombalgies chroniques :

Education aux neurosciences de la douleur (PNE)

- Pires *et al*, 2014
- Bodes Pardo et al, 2017
- ∘ Wood *et al*, 2019

Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial

Diogo Pires, Eduardo Brazete Cruz, Carmen Caeiro

But : comparer l'efficacité de la combinaison de balnéothérapie et d'éducation aux neurosciences de la douleur versus de la balnéothérapie seule chez des patients lombalgiques chroniques

Méthode:

Groupe contrôle	Groupe intervention
12 séances de balnéo sur 6 semaines	Idem groupe contrôle
30-50 minutes	+ 2 sessions de groupe de PNE
1- échauffement	90 minutes
2- exercices spécifiques	Basée sur <i>Explain Pain</i> (Butler et Moseley)
3- retour au calme	

Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial

Diogo Pires, Eduardo Brazete Cruz, Carmen Caeiro

Résultats:

- Différence significative (p<0,05) pour l'EVA entre les groupes en faveur du groupe intervention à 3 mois,
 pas de différence à 6 semaines
- Pas de différence significative entre les groupes pour les autres résultats
- Différence significative (p<0,05) entre les groupes dans la proportion de patients ayant atteint le MCID pour l'incapacité fonctionnelle (QBPDS) à 3 mois
- Groupe éducation atteint le MCID de l'EVA à 6 semaines et 3 mois

Groups	Baseline	6 weeks	Change baseline to 6 weeks	3 months	Change baseline to 3 months
Education group (n= 30) VAS (0-100)	43.4 ±23	20.6 ±19	-22.8 ±26.6	18.0 ±19	-25.4 ±26.7

Pires, 2014

Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial

Diogo Pires, Eduardo Brazete Cruz, Carmen Caeiro

Limites méthodologiques :

- ∘ Note PEDro: 8/10
- Thérapeutes pas en aveugle
- Petite taille d'échantillon
- Représentativité de la population ?
 - Bas niveau d'incapacité fonctionnelle et kinésiophobie
- Pas de contrôle des connaissances des patients en PNE

Conséquence possibles :

- Implication plus importante des thérapeutes pour le groupe intervention
- Difficultés à généraliser les résultats à la population générale de lombalgiques chroniques
- Difficultés d'imputer les résultats obtenus aux sessions de PNE

Bodes, 2018

Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial

Gema Bodes Pardo, PhD, Enrique Lluch Girbés, PhD , Nathalie A. Roussel, PhD, Tomás Gallego Izquierdo, PhD, Virginia Jiménez Penick, MSc, Daniel Pecos Martín, PhD

But : évaluer l'effet de l'éducation à la neurophysiologie de la douleur, en plus d'un programme d'exercices thérapeutiques comparé à un programme d'exercices thérapeutiques seul, chez des patients lombalgiques chroniques

Méthode:

Groupe contrôle (32)	Groupe intervention (30)
Contrôle moteur, étirements, exercices aérobie	Idem groupe contrôle
2 sessions : démonstration et correction des exercices	+ 2 sessions de groupe de PNE (30-50 minutes)
Exercices à domicile (mesure de l'observance)	Basée sur <i>Explain Pain</i> , site paininmotion.be
	Principaux concepts et réponses aux questions

Bodes, 2018

Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial

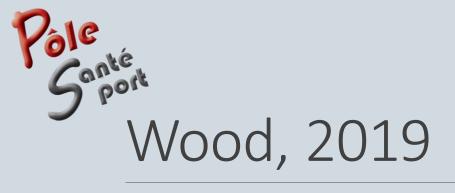
Gema Bodes Pardo, PhD, Enrique Lluch Girbés, PhD , Nathalie A. Roussel, PhD, Tomás Gallego Izquierdo, PhD, Virginia Jiménez Penick, MSc, Daniel Pecos Martín, PhD

Variable	Baseline	3-month follow-up	
NRS/ 0-10			
TE group	7.8 (7.5,8.4)	4.8 (4.1,5.5)	
PNE+TE group	7.9 (7.4,8.4)	2.7 (2.0,3.4)	
Between-group difference in	2 2 / 2 02 1 20	n < 0 001, d=1 27	
change score‡	-2.2 (-2.93,-1.28),	p<0.001; d=1.37	
RMDQ/ 0-24			
TE group	12.6 (12.1,13.1)	9.8 (8.9,10.6)	
PNE+TE group	12.0 (11.4,12.6)	6.4 (5.5,7.2)	
Between-group difference in -2.7 (-3.9,-1.4), p<0.001; d=1.15			
change score‡	-2.7 (-3.9,-1.4), μ	(0.001; d=1.15	
PCS/0-52			
TE group	32.1 (30.2,34.1)	26.9 (24.8,29.0)	
PNE+TE group	34.1 (31.2,37.0)	18.2 (15.4,21.0)	
Between-group difference in	10.6 / 12.1 (2.06)	n<0.001: d= 2.22	
change score‡	-10.6 (-13.1,-8.06),	p<0.001, u= 2.25	
TSK/11-44			
TE group	28.1 (26.0,30.2)	24.1 (22.0,26.1)	
PNE+TE group	28.7 (26.1,30.9)	16.1 (15.2,16.9)	
Between-group difference in	95 (11.0, 6.0)	20 001 d= 1 04	
change score‡	-8.5 (-11.0,-6.0), <u>r</u>	, u= 1.04	

Bodes, 2018

Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial

Gema Bodes Pardo, PhD, Enrique Lluch Girbés, PhD , Nathalie A. Roussel, PhD, Tomás Gallego Izquierdo, PhD, Virginia Jiménez Penick, MSc, Daniel Pecos Martín, PhD


Limites méthodologiques :

- Score PEDro : 7/10
- Thérapeutes pas en aveugle
- Petite taille d'échantillon
- Bias de sélection : patients volontaires
 - Représentativité de la population ?
- Pas de contrôle des connaissances des patients en PNE

Conséquences possibles :

- Implication plus importante des thérapeutes pour le groupe intervention
- Difficultés à généraliser les résultats à la population générale de lombalgiques chroniques
- Difficultés d'imputer les résultats obtenus aux sessions de PNE

A systematic review and meta-analysis of pain neuroscience education for chronic low back pain: Short-and long-term outcomes of pain and disability

Lianne Wood^{1,2} | Paul A. Hendrick³

But : évaluer les effets à court et long terme de l'éducation aux neurosciences de la douleur dans la lombalgie chronique

Méthode:

• 8 RCT inclus

Types d'intervention	Types de comparateur
PNE seule ou en combinaison avec d'autres techniques	Tout sauf de la PNE : physiothérapie/ kinésithérapie, autre techniques d'éducation, aucun traitement

A systematic review and meta-analysis of pain neuroscience education for chronic low back pain: Short-and long-term outcomes of pain and disability

Lianne Wood^{1,2} | Paul A. Hendrick³

Résultats:

Douleur :

Différence statistiquement (pas cliniquement) significative (p<0,01) quand ajout de PNE, hétérogénéité faible

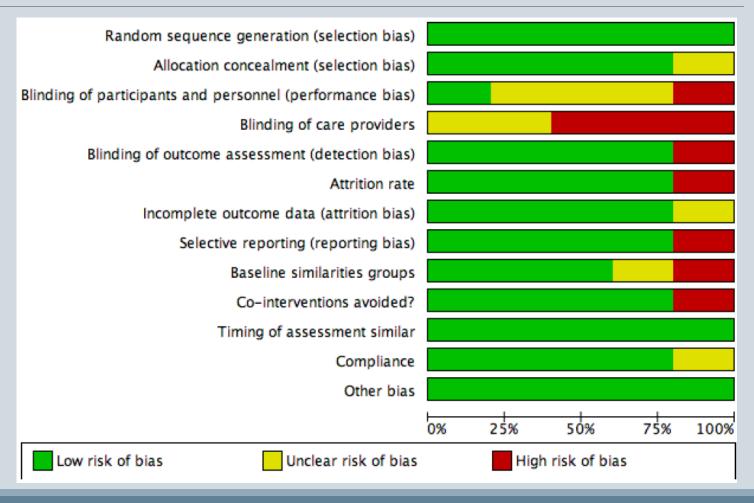
Incapacité :

Différence statistiquement et cliniquement significative (p=0,02) quand PNE seule ou en combinaison, hétérogénéité élevée

Différence statistiquement et cliniquement significative (p<0,01) quand ajout de PNE, hétérogénéité faible

Effets psychologiques :

Différence statistiquement significative (p<0,01) sur la TSK quand PNE seule ou en addition


A systematic review and meta-analysis of pain neuroscience education for chronic low back pain: Short-and long-term outcomes of pain and disability

Lianne Wood^{1,2} | Paul A. Hendrick³

Limites méthodologiques :

∘ Score AMSTAR: 9-10/16

Pour résumer – Et en pratique ?

Apport de la PNE lorsqu'elle est administrée en combinaison d'une intervention kinésithérapique chez des patients atteints de lombalgie chronique non-spécifique :

Douleur

Incapacité

Kinésiophobie et catastrophisation

La combinaison hands on/ hands off semble intéressante pour réduire les incapacités et lutter contre la kinésiophobie.

Résultats généralisables ? Représentativité des groupes utilisés ? Résultats imputables uniquement à la PNE ?

Et en pratique ?

L'objectivation de la kinésiophobie avec la Tampa Scale for Kinesiophobia (TSK) est-elle fiable entre 2 remplissages de l'auto-questionnaire par un même patient ?

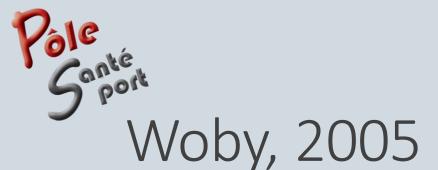
3 études se sont intéressées à cette question :

- Woby, 2005
- ∘ Lundberg, 2004
- Hapidou, 2012

1.	J ài peur de me blesser si je fais de l'activité physique	1	2	3	4
2.	Ma douleur ne ferait qu întensifier si j essayais de la vaincre	1	2	3	4
3.	Mon corps me dit que quelque chose ne va vraiment pas	1	2	3	4
4	Si la fajoria de li betività physique, me deuleur coroit probablement	-1	2	2	1
	soulagée *		_		
5 .	Les gens ne prennent pas mon état de santé assez au sérieux	1	2	3	4
6.	Mon accident a mis mon corps en danger pour le reste de mes jours	1	2	3	4
7.	La douleur signifie toujours que je me suis blessé(e)	1	2	3	4
0.	Même si quelque chose aggrave ma douleur, cela ne veut pas dire	4	2	0	4
	que c'est dangereux *				
9.	J ai peur de me blesser accidentellement	-	2	3	4
10.	La meilleure façon d'empêcher que ma douleur s'aggrave est de m'assurer de ne pas faire des mouvements inutiles	1	2	3	4
11.	Je n'aurais pas tant de douleurs s'îl ne se passait pas quelque chose de grave dans mon corps	1	2	3	4
12	Bion que me condition coit pénible, je corais mieux ci j étais	-1	2	3	4
	physiquement actif(ve) *				
13.	La douleur m îndique quand arrêter de faire des activités physiques pour que je ne me blesse pas	1	2	3	4
44	Il n bet pas prudent qu'une persenne aves un état de santé semme	4	2	2	
	le mien soit physiquement active		-	Ŭ	
15.	Je ne peux pas faire tout ce qu'une personne normale peut faire	1	2	3	4
	parce que j ài plus de risques de me blesser				
16.	Dien qu'il y ait quelque chose qui me cause beaucoup de deuleure,	4	2	3	4
	je ne pense pas que ce soit vraiment grave *				
17.	Personne ne devrait être obligé de faire des exercices lorsqu'il(elle)	1	2	3	4
	ressent de la douleur				

Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia

Steve R. Woby^{a,b,*}, Neil K. Roach^c, Martin Urmston^{a,b}, Paul J. Watson^d


But : évaluer les propriétés psychométriques de la Tampa Scale for Kinesiophobia (11 items), chez des patients lombalgiques chroniques

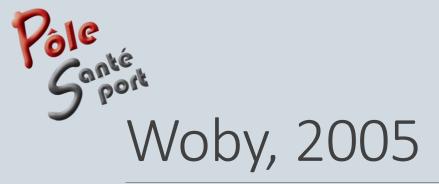
Étude de fiabilité uniquement

Méthode:

- 111 patients lombalgiques chroniques
- Critères d'exclusion : causes spécifiques de lombalgie, troubles neurologiques
- 3 jours entre les 2 tests

Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia

Steve R. Woby^{a,b,*}, Neil K. Roach^c, Martin Urmston^{a,b}, Paul J. Watson^d


Résultats:

- Alpha de Cronbach = 0,79
- Coefficient de corrélation intra classe = 0,81

Reliability of the TSK and TSK-11				
Measure	ICC (95% CI)			
TSK	0.76	0.82 (0.72-0.88)		
TSK-11	0.79	0.81 (0.71-0.88)		

Cronbach's alpha	Internal consistency
α ≥ 0.9	Excellent
0.9 > α ≥ 0.8	Good
0.8 > α ≥ 0.7	Acceptable
0.7 > α ≥ 0.6	Questionable
0.6 > α ≥ 0.5	Poor
0.5 > α	Unacceptable

- below 0.50: poor
- between 0.50 and 0.75: moderate
- between 0.75 and 0.90: good
- above 0.90: excellent

Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia

Steve R. Woby^{a,b,*}, Neil K. Roach^c, Martin Urmston^{a,b}, Paul J. Watson^d

Limites méthodologiques :

- Score QAREL
- Patients pas en aveugle de leur précédent résultat

Conséquences possibles :

 Possibilité que les patients se rappellent de leur premier test, et copient les résultats pour le second

Lundberg, 2004

A psychometric evaluation of the Tampa Scale for Kinesiophobia — from a physiotherapeutic perspective

Mari K. E. Lundberg, Jorma Styf, and Sven G. Carlsson

But : évaluer les propriétés psychométriques de la Tampa Scale for Kinesiophobia, chez des patients lombalgiques chroniques

Méthode:

- 75 patients lombalgiques chroniques
- Critères d'exclusion : cause spécifique lombalgie, troubles neurologiques
- 2 semaines entre les 2 tests

Hapidou, 2012

Fear and Avoidance of Movement in People with Chronic Pain: Psychometric Properties of the 11-Item Tampa Scale for Kinesiophobia (TSK-11)

Eleni G. Hapidou, PhD, C. Psych.;*† Mary Ann O'Brien, PhD, BHSc(PT);^{‡§} Michael Raymond Pierrynowski, PhD;[‡] Eugenio de las Heras, MScPT;[‡] Madri Patel. MScPT;[‡] Tasneem Patla. MScPT[‡]

But : déterminer les propriétés psychométriques de la TSK-11 chez des patients souffrant de douleurs chroniques hétérogènes

Méthode:

- 18 patients atteints de douleurs chroniques
- 4 jours entre les 2 tests

Lundberg, 2004

A psychometric evaluation of the Tampa Scale for Kinesiophobia — from a physiotherapeutic perspective

Mari K. E. Lundberg, Jorma Styf, and Sven G. Carlsson

Résultats:

- Coefficient de corrélation intra classe = 0,91
- Alpha de Cronbach = 0,81

Hapidou, 2012

Fear and Avoidance of Movement in People with Chronic Pain: Psychometric Properties of the 11-Item Tampa Scale for Kinesiophobia (TSK-11)

Eleni G. Hapidou, PhD, C. Psych.;*† Mary Ann O'Brien, PhD, BHSc(PT);^{‡§} Michael Raymond Pierrynowski, PhD;[‡] Eugenio de las Heras, MScPT;[‡] Madri Patel, MScPT;[‡] Tasneem Patla, MScPT[‡]

Résultats:

Coefficient de corrélation intra classe = 0,81

Pour résumer – lien avec la pratique

La mesure de la kinésiophobie par l'utilisation de la Tampa Scale for Kinesiophobia semble être fiable intra-examinateur, entre 2 remplissages de l'auto-questionnaire.

Il est donc possible d'utiliser cet outil pour évaluer le niveau de kinésiophobie des patients lombalgiques chroniques, afin de juger si une prise en charge mixte hands on/ hands off serait intéressante.

Possibilité de dépendance entre les résultats des 2 tests – Possibilité de changement clinique entre les 2 tests

Contexte scientifique (2)

Approche de gestion de la douleur en kinésithérapie, combinant techniques hands on et hands off, par Peter O'Sullivan

Thérapie cognitive fonctionnelle

1 RCT évaluant les effets de cette méthode dans la gestion de la lombalgie chronique

• Fersum et al, 2013

Fersum, 2013

Efficacy of classification-based cognitive functional therapy in patients with non-specific chronic low back pain: A randomized controlled trial

K. Vibe Fersum¹, P. O'Sullivan², J.S. Skouen^{1,3}, A. Smith², A. Kvåle¹

But : évaluer l'efficacité de la thérapie cognitive et fonctionnelle basée sur la classification comparée à de la thérapie manuelle et des exercices thérapeutiques dans la lombalgie chroniques non-spécifique

Groupe contrôle (43)	Groupe intervention (51)
Mobilisation/ manipulation rachis/ pelvis	Composante cognitive : cercle vicieux dessiné fonction examen et OMPQ
Exercices (cabinet/ domicile): - Renforcement global - Contrôle moteur	Exercices de mouvement spécifiques personnalisés
	Intégration fonctionnelle ciblée d'activités
	Programme d'activité physique adapté

Fersum, 2013

Efficacy of classification-based cognitive functional therapy in patients with non-specific chronic low back pain: A randomized controlled trial

K. Vibe Fersum¹, P. O'Sullivan², J.S. Skouen^{1,3}, A. Smith², A. Kvåle¹

	MT-EX		CB-CFT		CB-CFT vs MT-EX ^a
	Mean	SD	Mean	SD	Mean difference (95 % CI)
Primary outcome variables					
Oswestry Disability Index Questi	onnaire				
Baseline	24.0	8.0	21.3	7.5	_
3 months	18.5	8.1	7.6	6.7	−9.7 (−12.7 to −6.7,***
12 months	19.7	11.7	9.9	9.8	−8.2 (−12.6 to −3.8)***
Pain intensity in last week					
Baseline	5.3	1.9	4.9	2.0	
3 months	3.8	1.9	1.7	1.7	−2.1 (−2.7 to −1. 0***
12 months	3.8	2.1	2.3	2.0	-1.3 (-2.1 to -0.10***
Secondary outcome variables					
Hopkins Symptoms Checklist					
Baseline	1.56	0.39	1.40	0.33	
3 months	1.43	0.37	1.20	0.27	-0.12 (-0.19 to -0.(4)**)
12 months	1.51	0.47	1.22	0.32	-0.13 (-0.22 to -0.04)**
Fear-avoidance physical					
Baseline	11.8	5.0	11.1	3.9	
3 months	10.3	6.0	6.1	5.0	−3.6 (−5.3 to −1.¶***
12 months	10.9	5.5	5.8	5.5	-4.7 (-6.5 to -3.4)***
Fear-avoidance work					
Baseline	19.1	11.1	14.1	9.6	
3 months	17.4	10.8	8.3	8.4	−5.7 (−7.8 to −3.€)***
12 months	16.6	12.2	7.7	9.0	−5.6 (−8.7 to −2.1)***
Total lumbar spine range of mot	ion				
Baseline (degrees)	46.2	13.0	50.2	14.9	
3 months	45.6	12.7	49.7	14.0	1.9 (-2.8 to 6.7)

Fersum, 2013

Efficacy of classification-based cognitive functional therapy in patients with non-specific chronic low back pain: A randomized controlled trial

K. Vibe Fersum¹, P. O'Sullivan², J.S. Skouen^{1,3}, A. Smith², A. Kvåle¹

Limites méthodologiques :

- ∘ Score PEDro: 5/10
- Perdus de vue
- Pas d'intention de traiter
- Thérapeutes pas en aveugle
- Etude multidimensionnelle
- Créateur de la méthode dans les auteurs

Conséquences possibles :

- Implication plus importante des thérapeutes pour le groupe intervention
- Difficultés à généraliser les résultats à la population générale de lombalgiques chroniques
- Impossibilité de connaître les effets de chaque intervention spécifique de TCF
- Conflit d'intérêt

Et en pratique ?

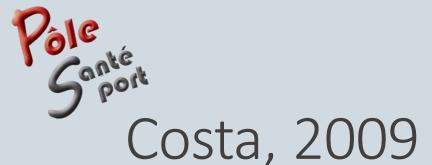
La thérapie cognitive fonctionnelle montre des résultats positifs chez des patients lombalgiques chroniques :

Douleur Incapacité

Kinésiophobie et les symptômes de l'anxiété et de la dépression

Cette méthode semble intéressante chez les patients lombalgiques chroniques, et renforce les preuves de l'efficacité de la **combinaison** hands on/ hands off sur l'incapacité et la kinésiophobie.

Une seule étude sur le sujet – Résultats généralisables ? – Conflit d'intérêt ?



Contexte clinique et scientifique

Certains patients lombalgiques présentent une altération des ajustements posturaux anticipateurs :

- Seuil d'activation augmenté du muscle transverse de l'abdomen
- Retard de contraction du transverse
- Contraction phasique, et non tonique et endurante du transverse
- Amyotrophie du transverse
- Fatigabilité des multifides (manque d'endurance)
- Manque de force des multifides

Costa s'est intéressé en 2009 aux patients lombalgiques chroniques présentant des troubles du contrôle moteur

Motor Control Exercise for Chronic Low Back Pain: A Randomized Placebo-Controlled Trial

Leonardo O.P. Costa, Christopher G. Maher, Jane Latimer, Paul W. Hodges, Robert D. Herbert, Kathryn M. Refshauge, James H. McAuley, Matthew D. Jennings

But : étudier l'efficacité des exercices de contrôle moteur chez les personnes souffrant de lombalgie chronique présentant une altération des anticipations posturales

Méthode:

Groupe contrôle (77)	Groupe intervention (77)
Thérapie par ondes courtes et échographie placebo	Exercices individualisés, contrôle de la posture et du mouvement
	1- Contraction isolée des muscles profonds + plancher pelvien Biofeedback par échographie
	2- Coordination tronc/ MI en statique, dynamique puis fonctionnel

Costa, 2009

Motor Control Exercise for Chronic Low Back Pain: A Randomized Placebo-Controlled Trial

Leonardo O.P. Costa, Christopher G. Maher, Jane Latimer, Paul W. Hodges, Robert D. Herbert, Kathryn M. Refshauge, James H. McAuley, Matthew D. Jennings

	Unadjusted Mean Outcome (SD)		Exercise Group Versus Placebo Group		
Variable	Exercise Group	Placebo Group	Adjusted Treatment Effect (95% CI)	P	
Pain ^b					
2 mo	4.6 (2.8)	5.6 (2.6)	-0.9 (-1.8 to 0.0)	.053	
6 mo	5.0 (2.9)	5.6 (2.5)	-0.5 (-1.4 to 0.5)	.335	
12 mo	5.0 (2.9)	6.3 (2.3)	-1.0 (-1.9 to -0.1)	.030	←
Global impression of recovery ^c					
2 mo	1.3 (3.2)	0.0 (3.1)	1.5 (0.4 to 2.5)	.005	
6 mo	1.5 (2.6)	0.3 (3.0)	1.4 (0.3 to 2.4)	.010	>
12 mo	1.2 (2.7)	-0.3 (2.9)	1.6 (0.6 to 2.6)	.003	
Activity ^d					
2 mo	5.2 (2.4)	4.1 (2.3)	1.1 (0.3 to 1.8)	.004	
6 mo	5.3 (2.7)	4.3 (2.6)	1.0 (0.3 to 1.8)	.007	>
12 mo	5.5 (2.6)	4.0 (2.6)	1.5 (0.7 to 2.2)	<.001	
Activity limitation ^e					
2 mo	9.6 (6.5)	11.9 (5.9)	-2.7 (-4.4 to -0.9)	.003	←
6 mo	10.3 (7.0)	12.2 (6.7)	-2.2 (-4.0 to -0.5)	.014	
12 mo	11.4 (7.8)	12.3 (6.4)	-1.0 (-2.8 to 0.8)	.271	

Motor Control Exercise for Chronic Low Back Pain: A Randomized Placebo-Controlled Trial

Leonardo O.P. Costa, Christopher G. Maher, Jane Latimer, Paul W. Hodges, Robert D. Herbert, Kathryn M. Refshauge, James H. McAuley, Matthew D. Jennings

Limites méthodologiques :

- ∘ Score PEDro: 9/10
- Thérapeutes non en aveugle
- Pas de mesure de l'observance des exercices à domicile

Conséquences possibles :

- Implication plus importante des thérapeutes pour le groupe intervention
- Hétérogénéité possible dans le groupe intervention pour la fréquence des exercices à domicile

Et en pratique ?

Des exercices individualisés de travail du contrôle moteur chez des patients lombalgiques chroniques présentant une altération des anticipations posturales semblent apporter des bénéfices

- sur l'incapacité perçue par les patients et,
- sur leur impression globale de récupération

Un travail sur les déficiences de contrôle moteur chez les patients lombalgiques chroniques peut être intéressant afin de modifier la perception qu'ils ont de leur propre état. Le fait d'être plus à même de ressentir leur progrès peut participer à augmenter leur **adhérence** au traitement.

Revue systématique Cochrane : travail du contrôle moteur pas supérieur à d'autres formes d'exercices

Et en pratique ?

Quel test utiliser afin d'évaluer le contrôle moteur chez des patients lombalgiques chroniques ? Quelle est la fiabilité inter-évaluateur de ce test ?

L'Active Straight Leg Raise (ASLR) est un test possible :

- Patient en décubitus dorsal
- Décoller le talon de 15-20cm, genou tendu
- Comparaison de la difficulté ressentie entre les 2 jambes
- Compensation observable : mouvement de torsion entre le tronc et le bassin
- Test positif si facilitation du mouvement par compression

Roussel, 2007

LOW BACK PAIN: CLINIMETRIC PROPERTIES OF THE TRENDELENBURG TEST, ACTIVE STRAIGHT LEG RAISE TEST, AND BREATHING PATTERN DURING ACTIVE STRAIGHT LEG RAISING

Nathalie A. Roussel, MT, PT,^a Jo Nijs, PhD,^b Steven Truijen, PhD,^c Line Smeuninx, PT,^d and Gaetane Stassijns, MD, PhD^e

But : évaluer la fiabilité inter-évaluateur de l'Active Straight Leg Raise chez des patients lombalgiques chroniques

Méthode:

- 36 patients lombalgiques chroniques
- Évaluateurs en aveugle des résultats obtenus par l'autre
- Pas de connaissances des antécédents médicaux des patients
- Ordre des tests assignés aléatoirement

Roussel, 2007

LOW BACK PAIN: CLINIMETRIC PROPERTIES OF THE TRENDELENBURG TEST, ACTIVE STRAIGHT LEG RAISE TEST, AND BREATHING PATTERN DURING ACTIVE STRAIGHT LEG RAISING

Nathalie A. Roussel, MT, PT,^a Jo Nijs, PhD,^b Steven Truijen, PhD,^c Line Smeuninx, PT,^d and Gaetane Stassijns, MD, PhD^e

Kappa de Cohen : κ > 0,70 pour les 2 jambes

κ	Interpretation
< 0	Désaccord
0.0 — 0.20	Accord très faible
0.21 — 0.40	Accord faible
0.41 — 0.60	Accord modéré
0.61 — 0.80	Accord fort
0.81 — 1.00	Accord presque parfait

Roussel, 2007

LOW BACK PAIN: CLINIMETRIC PROPERTIES OF THE TRENDELENBURG TEST, ACTIVE STRAIGHT LEG RAISE TEST, AND BREATHING PATTERN DURING ACTIVE STRAIGHT LEG RAISING

Nathalie A. Roussel, MT, PT,^a Jo Nijs, PhD,^b Steven Truijen, PhD,^c Line Smeuninx, PT,^d and Gaetane Stassijns, MD, PhD^e

Limites méthodologiques :

- Score QAREL
- Pas de mention des connaissances des thérapeutes sur des indices supplémentaires ne faisant pas partie du test (critère 7)

Conséquences possibles :

 Prise en compte d'indices ne faisant pas partie du test pour l'évaluation

Et en pratique ?

L'ASLR semble être un test fiable inter-observateur pour l'évaluation du contrôle moteur du muscle transverse de l'abdomen lors de mouvements du membre inférieur.

Il est possible d'utiliser l'ASLR afin de juger des anticipations posturales des patients lombalgiques chroniques (travail du transverse de l'abdomen), et ainsi prendre la décision ou non de la nécessité de donner des exercices de contrôle moteur.

En conclusion

Il n'existe pas un ensemble de techniques supérieur à un autre entre le hands on et le hands off.

Le choix du genre de techniques est fonction de la situation du patient, et du thérapeute.

La combinaison hands on/ hands off semble intéressante notamment pour :

- Réduire les incapacités
- Lutter contre la kinésiophobie

Bibliographie

Global Burden of Disease (GBD). (2014, mars 29). Consulté 13 février 2019, à l'adresse http://www.healthdata.org/gbd

Delitto, A., George, S. Z., Van Dillen, L., Whitman, J. M., Sowa, G., Shekelle, P., ... Godges, J. J. (2012). Low Back Pain: Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability, and Health from the Orthopaedic Section of the American Physical Therapy Association. *Journal of Orthopaedic & Sports Physical Therapy*, *42*(4), A1-A57. https://doi.org/10.2519/jospt.2012.42.4.A1

Haute Autorité de Santé - Diagnostic, prise en charge et suivi des malades atteints de lombalgie chronique. (s. d.). Consulté 12 juin 2018, à l'adresse https://www.has-sante.fr/portail/jcms/c 271859/fr/diagnostic-prise-en-charge-et-suivi-des-malades-atteints-de-lombalgie-chronique

Pires, D., Cruz, E. B., & Caeiro, C. (2015). Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial. *Clinical Rehabilitation*, 29(6), 538-547. https://doi.org/10.1177/0269215514549033

Bibliographie

Bodes Pardo, G., Lluch Girbés, E., Roussel, N. A., Gallego Izquierdo, T., Jiménez Penick, V., & Pecos Martín, D. (2018). Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial. *Archives of Physical Medicine and Rehabilitation*, 99(2), 338-347.

https://doi.org/10.1016/j.apmr.2017.10.016

Wood, L., & Hendrick, P. (2018). A systematic review and meta-analysis of pain neuroscience education for chronic low back pain: short- and long-term outcomes of pain and disability. *European Journal of Pain (London, England)*. https://doi.org/10.1002/ejp.1314

Woby, S. R., Roach, N. K., Urmston, M., & Watson, P. J. (2005). Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia: *Pain*, *117*(1), 137-144.

https://doi.org/10.1016/j.pain.2005.05.029

Lundberg, M. K. E., Styf, J., & Carlsson, S. G. (2004). A psychometric evaluation of the Tampa Scale for Kinesiophobia — from a physiotherapeutic perspective. *Physiotherapy Theory and Practice*, *20*(2), 121-133. https://doi.org/10.1080/09593980490453002

Bibliographie

Hapidou, E. G., O'Brien, M. A., Pierrynowski, M. R., de las Heras, E., Patel, M., & Patla, T. (2012). Fear and Avoidance of Movement in People with Chronic Pain: Psychometric Properties of the 11-Item Tampa Scale for Kinesiophobia (TSK-11). *Physiotherapy Canada*, *64*(3), 235-241. https://doi.org/10.3138/ptc.2011-10

Vibe Fersum, K., O'Sullivan, P., Skouen, J. S., Smith, A., & Kvåle, A. (2013). Efficacy of classification-based cognitive functional therapy in patients with non-specific chronic low back pain: A randomized controlled trial: Classification-based cognitive functional therapy. *European Journal of Pain*, 17(6), 916-928. https://doi.org/10.1002/j.1532-2149.2012.00252.x

Costa, L. O. P., Maher, C. G., Latimer, J., Hodges, P. W., Herbert, R. D., Refshauge, K. M., ... Jennings, M. D. (2009). Motor Control Exercise for Chronic Low Back Pain: A Randomized Placebo-Controlled Trial. *Physical Therapy*, 89(12), 1275-1286. https://doi.org/10.2522/ptj.20090218

Roussel, N. A., Nijs, J., Truijen, S., Smeuninx, L., & Stassijns, G. (2007). Low Back Pain: Clinimetric Properties of the Trendelenburg Test, Active Straight Leg Raise Test, and Breathing Pattern During Active Straight Leg Raising. *Journal of Manipulative and Physiological Therapeutics*, 30(4), 270-278. https://doi.org/10.1016/j.impt.2007.03.001